If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9x^2-15x+45=0
a = -4.9; b = -15; c = +45;
Δ = b2-4ac
Δ = -152-4·(-4.9)·45
Δ = 1107
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1107}=\sqrt{9*123}=\sqrt{9}*\sqrt{123}=3\sqrt{123}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-3\sqrt{123}}{2*-4.9}=\frac{15-3\sqrt{123}}{-9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+3\sqrt{123}}{2*-4.9}=\frac{15+3\sqrt{123}}{-9.8} $
| 4.9x^2-15x+45=0 | | 9w=138 | | 46+(5w-4)=180 | | -60=2/3x | | 8w+(9w-1)+62=180 | | -1/3=-1/3x+7 | | -3-7(2x-7)=-3x-31 | | 3*(-4b)+40/2=-4b | | 24=-0.375(x^2)-0.75x+30 | | 7(2h-4)=9h | | .85*x=253.16 | | i5y-10i=-5 | | 15x+5x+70=180 | | 3x+4x+42=9x | | 21x=-5=3+19x | | i3x-6i=12 | | 0=-9x^2+30x-25 | | 16f+24=8(2f+30 | | 128k-13=59 | | 1+3(-2+6(4-2x))=-(x+3) | | x9=9x2 | | f(-6)=(6) | | 4y+3=21* | | -8k-92=-28 | | -6=3(p+27) | | -2e=-170 | | -102=-3(c-8) | | 2x^2-x-89=0 | | 6.5/u=3/11.7= | | -4(6x+8)=36+7x | | 5(1+r)=-6-4r | | -7n-15=-8n-1+8n |